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Abstract—For many embedded systems, such as automotive
electronic systems, security has become a pressing challenge.
Limited resources and tight timing constraints often make it
difficult to apply even lightweight authentication and intrusion
detection schemes, especially when retrofitting existing designs.
Moreover, traditional hard deadline assumption is insufficient to
describe control tasks that have certain degrees of robustness
and can tolerate some deadline misses while satisfying functional
properties such as stability. In this work, we explore feasible
weakly-hard constraints on control tasks, and then leverage
the scheduling flexibility from those allowed misses to enhance
system’s capability for accommodating security monitoring tasks.
We develop a co-design approach that 1) sets feasible weakly-
hard constraints on control tasks based on quantitative analysis,
ensuring the satisfaction of control stability and performance
requirements; and 2) optimizes the allocation, priority, and
period assignment of security monitoring tasks, improving system
security while meeting timing constraints (including the weakly-
hard constraints on control tasks). Experimental results on an in-
dustrial case study and a set of synthetic examples demonstrated
the significant potential of leveraging weakly-hard constraints
to improve security and the effectiveness of our approach in
exploring the design space to fully realize such potential.

I. INTRODUCTION

Security challenges in automotive systems: Security has

become a pressing issue for automotive electronic systems.

Researchers have demonstrated that malicious attackers can

successfully compromise a variety of local and remote inter-

faces in vehicles, and then carry out attacks on safety-critical

components via in-vehicle communication networks such as

the Controller Area Networks (CAN) buses [1], [2], [3].

As one important element to address automotive secu-

rity challenges, various approaches have been proposed to

harden in-vehicle communications, via authentication mech-

anisms [4], [5], [6] or intrusion detection techniques [7], [8],

[9], [10]. For instance, in [8], an anomaly-based intrusion

detection technique is proposed to analyze the local clocks of

Electronic Control Units (ECUs) for identifying abnormal be-

havior. In [7], a detection technique is proposed to constantly

monitor in-vehicle communication (e.g., CAN messages) and

detect malicious attacks that alter the message streams.

However, due to limited resources and tight timing con-

straints, it is often challenging or even prohibitive to apply

these intrusion detection or authentication techniques. The ad-

dition of these security mechanisms may prolong the execution

of other functions (e.g., by preempting the existing control

tasks), and cause them to violate their execution deadlines.

Studies in [6], [11], [12], [8] showed that it is difficult to

apply even lightweight authentication methods in current in-

vehicle networks such as CAN, and adding intrusion detection

techniques will also require careful timing analysis and may

not be feasible under hard timing constraints [7], [13].

Control with deadline misses and weakly-hard constraints:

Many system functions such as some control tasks, however,

have certain degrees of robustness and can tolerate some dead-

line misses while still satisfy functional properties and perfor-

mance requirements, as long as those misses are bounded and

dependably controlled. Recent works have studied the impact

of deadline misses on control performance and stability [14],

[15], [16], [17], [18]. For instance, in [15], the authors present

an analytical bound of deadline miss ratio that can ensure

the stability of a distributed embedded controller. In [16],

the worst-case control performance for an LQR controller is

analyzed under deadline misses. In [14], the authors provide

a general framework to capture the control performance with

respect to a specific sequence of deadline miss pattern.

Weakly-hard constraints are thus proposed to capture the

timing requirements for tasks that allow deadline misses. A

common form is the (k,N) constraint, which specifies that

among any N consecutive task executions, at most k instances

can miss their deadlines [19], [20]. These constraints more

precisely reflect the timing requirements for many system

functions, and provide more scheduling slack by allowing

deadline misses with safety guarantees [21], [22]. In the lit-

erature, methods were developed for leveraging the additional

slack to improve schedulability [19], [23], [24], [25]. In [19],

weakly-hard constraints are formally defined and algorithms

are proposed for scheduling periodic tasks under such con-

straints. In [25], schedulability analysis for periodic tasks is

improved with unknown task activation offsets. In [23], a

general non-periodic task model is defined and a typical worst-

case analysis (TWCA) algorithm is introduced for analyzing

sporadic overloads. TWCA for weakly-hard schedulability

analysis on the general model is formally presented in [24],

and extended for systems with task dependencies in [26].

There are also related works that leverage weakly-hard con-

straints for better energy-driven scheduling, such as [27], [28].

Our codesign approach in leveraging weakly-hard con-

straints to enhance security: In this work, we leverage

the scheduling flexibility/slack from the control tasks that
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allow deadline misses to improve the security of automotive

systems, i.e., to better accommodate security monitoring tasks

while meeting the stability and performance requirements of

control tasks. We develop a codesign approach that holistically

addresses control and security, bridging the two aspects via the

exploration of weakly-hard constraints on control tasks and

the design of security monitoring tasks (the general codesign

methodology has been applied to hard real-time systems in

our prior work [29], [30], [31]). More specifically, in this

work we model the control tasks running on ECUs as switched

systems and derive the control stability and performance under

various deadline miss patterns within a hyper-period. We then

consider deploying security monitoring tasks on the ECUs

and let them monitor CAN messages for anomaly detection.

We developed an algorithm to explore the allocation, priority,

and period assignment of these security monitoring tasks, with

control analysis and schedulabiltiy analysis, to improve system

security while ensuring that 1) for control tasks that allow

deadline misses, their stability and performance requirements

are met based on the analysis of the deadline miss patterns,

2) for other tasks including the security monitoring tasks,

their deadlines are always met, and 3) constraints on security

monitoring are met.

Our approach could free up resources for incorporating

security monitoring mechanisms into existing automotive sys-

tem designs. This is critical in automotive domain, as there

are often significant reuse of legacy E/E architectures and

constant needs of updating existing systems or system de-

signs for fixing bugs and providing new functionality (e.g.,

security features) [32], [33], [34]. While this work focuses

on automotive systems, our approach could be modified to

address other resource-constrained systems that have similar

characteristics and allow weakly-hard constraints. To the best

of our knowledge, this work is the first to leverage weakly-

hard constraints for control tasks to harden system security.

The main technical contribution of this work includes:

• We presented a control analysis method for linear time-

invariant control systems, to verify the stability and measure

the control performance under different deadline miss pat-

terns. We also formulated the addition of security monitor-

ing tasks for intrusion detection, and defined a correspond-

ing security objective function and other related constraints.

• We formulated a constrained multi-objective optimization

problem to determine the configuration of security monitor-

ing tasks for improving system security and control perfor-

mance. The two objectives are typically conflicting and the

problem is non-linear and non-convex. Thus, we developed

a meta-heuristic approach (i.e., simulated annealing) for

exploring the design space and obtaining the pseudo Pareto-

optimal configurations for security monitoring tasks.

• We conducted experiments on an industrial case study and

a set of synthetic examples. The experiments demonstrated

that 1) compared with hard deadlines, weakly-hard con-

straints can significantly improve system’s ability to ac-

commodate security monitoring tasks, and 2) our codesign

approach is effective for exploring the design space and

fully leveraging the potential of weakly-hard constraints.

In the following, Section II describes our system model.

Section III introduces our problem analysis and formulation.

Section IV presents our algorithm for exploring the design

of security monitoring tasks, with control and schedulability

analysis. Section V presents the experimental results.

II. SYSTEM MODELING

We consider a system that consists of multiple homogeneous

single-core ECUs connected with a CAN bus, and let E =
{e1, e2, . . . , ene

} denote the set of ECUs. As shown in Fig. 1,

different types of tasks may run on the ECUs (similarly as

assumed in [7]), including: a) security monitoring tasks that

monitor the CAN messages for intrusion detection, b) control

tasks that implement controller functions, and c) tasks that

implement other functionalities.

ECU1

ECU2

ECU3

CAN bus

Physical 
plant

Other tasksControl tasksSecurity monitoring tasks

Sensor

Physical 
plant

SensorActuator Actuator

ECU4

Attack

Fig. 1. System model.

We let T = {τ1, τ2, . . . , τn} denote the set of all the

tasks in the system. We consider that all tasks are periodic,

and tasks running on the same ECU are scheduled based on

preemptive static-priority based policy. Each task τi can be

represented by a tuple {cτi , dτi , tτi , pτi}, where cτi is the

worst-case execution time (WCET), dτi is the deadline, tτi
is the task period, and pτi is the task priority. We assume

that some of the control tasks may allow deadline misses in a

bounded and controlled manner, and their timing requirements

can be captured by weakly-hard constraints as introduced later.

For the rest of the tasks, including security monitoring tasks,

other tasks, and control tasks that do not allow deadline misses,

we assume hard timing constraints, i.e., their deadlines should

always be met1. Let M = {m1,m2, . . . ,mnmsg
} denote the

set of CAN bus messages. Each message mi has a period tmi
.

In this work, we assume that the configuration of CAN bus

messages is given by the system designers and is schedulable.

An example of the system model is explained in Appendix A.

1In principle, other tasks (e.g., those for sensing, computation and com-
munication), security monitoring tasks, and CAN messages may also allow
deadline misses and be defined with weakly-hard constraints. Those scenarios
are beyond the scope of this paper, and will be addressed in future work.
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Next, we introduce our models for the security monitoring

tasks and control tasks in more details.

A. Security Monitoring Tasks

As stated above, we consider security monitoring tasks

that monitor CAN messages and implement certain anomaly-

based intrusion detection mechanism, such as those in [10],

[35], [36], [7], [8]. Our model is relatively general, and

does not restrict the monitoring tasks to a specific intrusion

detection mechanism. We assume that on an ECU with security

monitoring tasks, a local buffer will store the messages being

monitored and other relevant information, e.g., the timestamps

of the message transmissions. At each activation of a security

monitoring task, it retrieves the messages it monitors and

other corresponding information, and checks any possible

anomalies. Note that as messages are periodically transmitted,

the security monitoring tasks in fact monitor message streams.

An ECU may have multiple security monitoring tasks

that scrutinize different CAN messages. We let TSi =
{τmonitor,i,1, . . . , τmonitor,i,|TSi|} denote the set of monitor-

ing tasks on ECU ei, where operator |•| denotes the cardinality

of a set. The set of all the security monitoring tasks in the

system is denoted as TS =
⋃ne

i=1 TSi. Each security moni-

toring task τmonitor,i,j is captured with a period tτmonitor,i,j
,

a deadline equal to its period, a worst-case execution time

cτmonitor,i,j
, and a priority pτmonitor,i,j

. As stated before, the

security monitoring tasks are scheduled together with control

tasks and other tasks based on static priorities.

The task τmonitor,i,j can monitor a set of messages that

have the same period, denoted by Mτmonitor,i,j
. We use tmi,j

to denote the period of these messages. Since a security mon-

itoring task would typically inspect each monitored message

and perform some computation based on it, it is conceivable

that the WCET of such a task τmonitor,i,j will be polynomial

in |Mτmonitor,i,j
|. In this work, we simply consider

cτmonitor,i,j
= kwcet × |Mτmonitor,i,j

|, (1)

where kwcet is considered as a given parameter that depends

on the monitoring functionality. In our experiments, we relate

the computation time of security monitoring tasks to a prior

study in the literature [37], [7], where it shows monitoring 15

message streams will consume about 5% of the ECU resource.

Therefore, we assume that 1×kwcet

tτmonitor,i,j

will take 5%
15 = 0.33%

of ECU utilization in experiments.

B. Controller Model and Control Tasks

In this work, we study linear time-invariant (LTI) systems

for which the dynamics of the physical plant can be modeled

as ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t). Here, A, B and

C are system matrices, and x(t), u(t) and y(t) are vectors

representing the system state, control input and system output

at time t, respectively. We consider that the system state is

read periodically by sensing devices at discrete time instants

{tk}, where the sampling period is a constant and is given

by h = tk+1 − tk. The system state x[k] (i.e., x(tk)) read

at time tk is used to compute the control input u[k] which

is then applied to the plant by the actuator. As the controller

is implemented on an embedded platform, computation and

communication can take non-negligible time which may result

in a sensing-to-actuation delay. We assume that the sensing-to-

actuation delay is bounded by a deadline D and D < h (we

will discuss later how this deadline may be evaluated). We

further assume that the system adopts the Logical Execution

Time (LET) paradigm [38], where the control input is updated

at the sensing-to-actuation deadlines. The LET implementation

provides fixed closed-loop delay (when deadline is met) and

thus facilitates more predictable control, and has been adopted

in the literature [18], [14]. In our case, the actuator applies the

control input {u[k]} at time instants {tk +D}.
Corresponding to the sampling period h and the sensing-

to-actuation delay D, we can write the equivalent delayed
discrete-time system model (Chapter 2 in [39]) as

x[k+1] = Adx[k] +Bd,0u[k] +Bd,1u[k− 1], y[k] = Cx[k], (2)

where Bd,0 =
h−D
∫

0

eAs ·Bds and Bd,1 =
h
∫

h−D

eAs ·Bds.

For an augmented state vector z[k] =

[

x[k]
u[k − 1]

]

, we

reformulate (2) as

z[k + 1] = Aaugz[k] +Baugu[k], y[k] = Caugz[k], (3)

where Aaug =

[

Ad Bd,1

0 0

]

, Baug =

[

Bd,0

I

]

, Caug =
[

C 0
]

with 0 and I denoting zero matrix and identity matrix respec-

tively of suitable dimensions [40]. We consider the feedback

control law to be u[k] = −Kz[k] with the feedback gain K

calculated using pole-placement technique [41].

Controller implementation: We consider that the control law

is implemented using a software control task τc running on an

ECU. As shown in Fig. 1, each controlled plant is connected

locally to the sensing and actuation units, and we assume that

the sensing and actuation delays are bounded by ds and da,

respectively2. Thus, to realize the sensing-to-actuation delay

D, the deadline of the control task dτc is restricted by dτc =
D − ds − da. Now, during execution, if a job of the control

task τc meets the deadline dτc , the control input will be applied

with the delay D (following the LET paradigm as discussed

before); if a job of τc violates the deadline dτc , the job will

be killed and the control input will be zero.

A similar control strategy is used in [15], with the assump-

tion that the sensing-to-actuation delay is exactly equal to one

sampling period. In [14], the control input is held when a job

is killed, assuming that the maximum consecutive deadline

misses is upper-bounded and the magnitude of a disturbance

is known. In our work, these assumptions are relaxed. Next

in Section III-A, we introduce a control performance metric

to measure the ability of the system to quickly reject a

disturbance, and thereafter, show how to evaluate the impact

of deadline misses on stability and control performance.

2In the cases where sensing and actuation units are distributed and commu-
nicated to control tasks via CAN messages, timing analysis on the messages
should be conducted to bound the worst-case sensing and actuation delays.
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III. PROBLEM ANALYSIS AND FORMULATION

In our work, we consider adding security monitoring tasks

to an existing system design, and thus assume the allocation,

priority, and period of control tasks and other tasks are given.

We focus on exploring the allocation, priority, and period of

security monitoring tasks, to improve system security while

ensuring that various constraints are met. To achieve this,

we developed a holistic formulation to model and analyze

the control stability and performance under deadline misses,

the constraints related to security monitoring tasks, a security

objective function for measuring system’s intrusion detection

capability, and the schedulability constraints for all tasks

(under weakly-hard or hard deadlines), as introduced below.

A. Stability and Control Performance

Asymptotic stability: A discrete-time system is asymptot-

ically stable if all the closed-loop poles lie inside a unit

circle (Chapter 3 in [39]). From the augmented state-space

model (3) and the control law, we have the following closed

loop dynamics:

z[k + 1] = (Aaug −BaugK)z[k] = Aclz[k]. (4)

The system, described in (4), is asymptotically stable, if and

only if all eigenvalues of Acl satisfy |λi| < 1 [39].

Control performance metric: In this work, we consider

stabilization control, i.e., the controller must quickly bring

the system back to the equilibrium state after a disturbance.

Without loss of generality, we assume that the equilibrium

state is at the origin of the state-space. Let us consider that

a disturbance arriving at time tk brings the system to a state

z[k]. The magnitude of the disturbance is measured by the

deviation of the system from the equilibrium state, i.e., ‖z[k]‖.

The system state at time tk+r is z[k + r]. Assuming no

further disturbance injection, the residual disturbance Jr after

r sampling intervals is given by Jr = ‖z[k+r]‖
‖z[k]‖ . We quantify

the ability of a controller to reject disturbances using a metric

H where H is the number of sampling intervals needed to

bring the residual disturbance Jr to less than or equal to a

certain threshold Jth, i.e.,

Jr ≤ Jth, ∀r ≥ H. (5)

The lower the value of H is, the quicker the disturbance is

rejected and the better the control performance is. With no

overlapping disturbances, we can write z[k + r] = Ar
clz[k],

and therefore, Jr ≤ ‖Ar
cl‖. As Jr depends on z[k], which is

a variable and not known in advance, we will use this upper

bound to evaluate the performance of a controller. We consider

that the controller must satisfy a certain minimum performance

requirement, denoted as Hr, such that H ≤ Hr.

Deadline hit/miss pattern: For the problem under study,

given the set of control and monitoring tasks for the target

architecture and the task configuration, we can obtain a pattern

of deadline hits/misses for each task using schedulability

analysis (as introduced later in Section IV-A). The periodicity

of the deadline hit/miss sequence is determined by the hyper-

period of all the tasks mapped on the same ECU, i.e., the

least common multiple of these tasks’ periods. Here, a binary

variable σn is used to denote the state of the n-th job of a

task in a hyper-period, i.e., σn = 1 when the deadline is

met (hit) while σn = 0 when the deadline is missed. Let

Π = (σ1σ2 · · ·σN · · · ) denote a periodic deadline hit/miss

pattern for a control task, where, there are N sampling

instants within a hyper-period. For such an infinitely repeating

pattern of deadline hits/misses, there exist a maximum of N

distinct control sequences for a given disturbance. For an

example pattern Π = (10111011 · · · ), disturbance arriving

at the first, second, third and fourth sampling instants will

result in four different control sequences. This is because

the sequence of deadline hits/misses starting from the instant

where the disturbance is injected is different in each of the

cases, i.e., Π1 = (10111011 · · · ), Π2 = (01110111 · · · ),
Π3 = (11101110 · · · ) and Π4 = (11011101 · · · ). We denote

such a sequence starting from the n-th sampling instant in a

hyper-period as Πn = (σnσn+1 · · ·σNσ1 · · ·σn−1σn · · · ).

Switched system model: According to the control model dis-

cussed in Section II-B, u[k] = 0 when σmod(k,N)+1 = 0 and

u[k] = −Kz[k] when σmod(k,N)+1 = 1, where mod(k,N)
gives the remainder when k is divided by N . The closed-loop

system can then be modeled as a switched system depending

on the deadline hit/miss pattern. Based on (2), (3) and the

adopted control model, the switched system is composed of

a maximum of four subsystems. Here we do not assume

any restriction on the number of consecutive deadline misses

(contrary to [14]). These subsystems can be modeled as:

• When σmod(k,N)+1 = 0 and σmod(k−1,N)+1 = 0, (2)

becomes x[k+1] = Adx[k] and u[k] = 0. Correspondingly,

the augmented state-space model in (3) becomes

z[k + 1] =

[

Ad 0

0 0

]

z[k] = A00z[k].

• With σmod(k,N)+1 = 1 and σmod(k−1,N)+1 = 0, (2)

becomes x[k+1] = Adx[k]+Bd,0u[k] and u[k] = −Kz[k].
Thus, the augmented state-space model in (3) becomes

z[k + 1] =

([

Ad 0

0 0

]

−

[

Bd,0

1

]

K

)

z[k] = A01z[k].

• For σmod(k,N)+1 = 0 and σmod(k−1,N)+1 = 1, (2) becomes

x[k + 1] = Adx[k] + Bd,1u[k − 1] and u[k] = 0. The

augmented state-space model in (3), therefore, becomes

z[k + 1] =

[

Ad Bd,1

0 0

]

z[k] = A10z[k].

• In case, σmod(k,N)+1 = 1 and σmod(k−1,N)+1 = 1, the

plant dynamics evolve as in (2). The augmented state-space

model is, thus, as given in (3). The state-transition matrix

A11 can be written as A11 = Aaug −BaugK.

Stability and performance constraints: For a deadline

hit/miss pattern Π, we need to evaluate the stability and

performance of the control loop for all possible sequences

of hits/misses, i.e., {Π1,Π2, · · · ,ΠN}. Given a sequence

Πn of deadline hits/misses, the evolution of the system

from z[k] (where k is the n-th sampling instant in a hyper-
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period consisting of N samples, i.e., n = mod(k,N) + 1)

would be governed by the sequence of closed-loop matrices

(Aσn−1σn
, Aσnσn+1 , · · · , AσNσ1 , Aσ1σ2 , · · · , Aσn−2σn−1 , · · · ).

Therefore, the system evolves as follows:

z[k + r] = An,rz[k], where,

An,1 = Aσmod(k−1,N)+1σmod(k,N)+1
,

An,r = Aσmod(k+r−2,N)+1σmod(k+r−1,N)+1
·An,r−1.

(6)

Such a switched system is asymptotically stable if the eigen-

values of An,N lie inside a unit circle. Thus, the stability

constraint for a control loop experiencing a deadline hit/miss

according to Π is given by

∀1 ≤ n ≤ N, ∀λi ∈ eig(An,N ), |λi| < 1, (7)

where eig(An,N ) is the set of eigenvalues of An,N .

When the disturbance is observed at the k-th instant and

n = mod(k,N) + 1, the residual disturbance Jr(n) after r

time samples can be written as Jr(n) =
‖z[k+r]‖
‖z[k]‖ ≤ ‖An,r‖.

Now the control performance as measured by H(n) for the

sequence Πn is Jr(n) ≤ ‖An,r‖ ≤ Jth, ∀r ≥ H(n) and the

worst-case performance H∗ for a given periodic sequence Π
must satisfy a given requirement Hr and is given by

H∗ = max
1≤n≤N

H(n) ≤ Hr. (8)

If (8) is not satisfied then Π is not an acceptable sequence.

Control performance objective: During the design space ex-

ploration, we consider control performance as an optimization

objective, and address it together with security. We let Hdes
τi

denote the control performance when no deadline miss occurs

(for normalization purpose), and let H∗
τi

be computed as in (8).

We define the system-level control performance P as follows:

P =
∑

τi∈TC

ηi
H∗

τi

Hdes
τi

, (9)

where ηi are the weights and TC is the set of control tasks.

B. Security Constraints and Objective

Security monitoring constraints: We consider the following

requirements when adding security monitoring tasks:

• Coverage: A pre-defined set of critical CAN messages,

denoted by Mcri, may be given. Each message in Mcri

should be covered by at least one security monitoring task.

• Redundancy: A CAN message may be required to be

monitored by multiple tasks on different ECUs to avoid

a single point of failure.

We can formalize the above requirements for message mi as
ne
∑

j=1

ai,j = μi, ∀mi ∈ Mcri, (10)

where binary variable ai,j = 1 if mi is monitored by a security

task on ECU ej . Parameter μi is defined as the redundancy

level for mi (μi ≥ 1), representing how many tasks on

different ECUs are required to monitor mi.

Moreover, we may set constraints on the period of se-

curity monitoring tasks. Intuitively, setting a smaller period

(higher frequency) for a security monitoring task τmonitor,i,j

may provide better intrusion detection capability (as further

discussed below in security objective), but also incur higher

computational overhead. To balance the detection efficacy and

overhead, we set a period constraint as

T des
i,j ≤ tmonitor,i,j ≤ Tmax

i,j , (11)

where T des
i,j is the desired monitoring period that provides

ideal detection efficacy, while Tmax
i,j is the maximum period

that can still provide meaningful detection capability. Similar

constraints were used in the literature [13], [42], with T des
i,j and

Tmax
i,j assumed as given by the designers. In our experiments,

T des
i,j is set to tmi,j , the period of monitored messages. Tmax

i,j

is set as an integer multiple of tmi,j , i.e., Tmax
i,j = Kmaxtmi,j .

Security objective: To define a system-level security objec-

tive function, we first measure the efficacy of each security

monitoring task τmonitor,i,j to detect the potential anomaly

of a message mk ∈ Mτmonitor,i,j
. We assume the anomaly

detection mechanism is already given and only focus on its

timing aspect, and we define a worst-case detection delay

metric Dτmonitor,i,j
to measure the maximum time it takes

for the monitoring task to detect the message anomaly.

Consider a security attack occurs and leads to abnormal

behavior for mk at time t. In the worst case, this could

happen right after the s-th job instance of the monitoring

task τmonitor,i,j had just been activated, and we have to wait

until the (s+1)-th job of the monitoring task to be activated

and complete its execution for detection. Thus, the worst-case

detection delay Dτmonitor,i,j
should include the monitoring

task’s activation period and worst-case response time3 , i.e.,

Dτmonitor,i,j
= tτmonitor,i,j

+ rτmonitor,i,j
.

Since a message mk may be monitored by multiple secu-

rity monitoring tasks, we can further define the worst-case

detection delay for message mk as the maximum time for the

anomaly of mk to be detected by any one of its monitoring

tasks, i.e., Dmk
= min{Dτmonitor,i,j

|mk ∈ Mτmonitor,i,j
}.

For normalization, we define the desired detection delay

as Ddes
mk

= min{Ddes
τmonitor,i,j

|mk ∈ Mτmonitor,i,j
}, where

Ddes
τmonitor,i,j

= T des
i,j + cτmonitor,i,j

. That is, Ddes
τmonitor,i,j

corresponds to the scenario where task τmonitor,i,j is assigned

with the desired period and highest priority. With this, we

define a system-level security objective as

S =
∑

mk∈Mcri

ωk

Dmk

Ddes
mk

, (12)

where ωk are the weighting factors.

C. Schedulability Constraints

As stated in Section II, some control tasks in the system

may be bounded by weakly-hard constraints, while the rest of

the tasks are bounded by hard deadlines. For a control task τi
with weakly-hard constraints, we denote its timing requirement

3Here we assume the security monitoring task is able to detect the anomaly
in its first activation. This may not be the case in complex scenarios, but as our
work is agnostic to the specific anomaly detection functionality, we believe
this is a reasonable first-degree approximation.
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as ζi = {(k1i , N
1
i ), . . . , (k

ni

i , Nni

i )} (similar to [14]), where

(kji , N
j
i ) means for any N

j
i consecutive activations of task τi,

at most k
j
i deadline misses are allowed. Task τi satisfies its

weakly-hard constraint, i.e., is schedulable, if

dmmi(N
j
i ) ≤ k

j
i , ∀j, 1 ≤ j ≤ ni, (13)

where dmmi(N
j
i ) denotes the worst-case number of deadline

misses of τi in N
j
i consecutive activations. In Section IV,

we present our event-based simulation method for analyzing

the schedule within a hyper-period and checking the deadline

misses (i.e., dmmi(N
j
i )) for tasks.

For a task τi with hard timing constrains, we can calculate

its worst-case response time rτi using the busy window

analysis in [23]. The task is schedulable if

rτi ≤ dτi . (14)

D. Overall Formulation

Our codesign approach optimizes a joint objective function

that combines the security objective in (12) and the control

performance objective in (9), as

J = αS + βP, (15)

where α and β are parameters for trading off the two

objectives. The overall constrained optimization formulation

with constraints on control stability, performance, security

monitoring, and schedulability is:

minimize J

subject to Equations (7), (8), (10), (11), (13), (14).

IV. OPTIMIZATION ALGORITHM FOR CODESIGN

The optimization problem formulated above in Section III-D

is non-convex and complex to solve. In particular, the sta-

bility and performance for each control task depend on its

deadline miss pattern, which needs to be obtained through

schedulability analysis under weakly-hard constraints. Such

analysis (e.g., for evaluating dmmi(N
j
i ) in Equation (13)) can

hardly be captured with closed-form equations and addressed

by existing solvers. The exploration of the feasible weakly-

hard constraints under both control and schedulability analysis

further increases the complexity. Thus, we developed a meta-

heuristic algorithm to solve the problem. The algorithm first

uses a heuristic method based on bin packing for generating

an initial configuration of the security monitoring tasks, and

then carries out a simulated annealing (SA) process to explore

the system configuration space via random permutation of

the allocation, priority, and period of the security monitoring

tasks. During the SA process, for each system configuration,

the algorithm calls routines for schedulability analysis, control

analysis, and evaluation of security constraints and objective.

This provides the feasibility of various constraints and the

overall objective value (Equation (15)). The algorithm then

decides whether to accept or reject the randomly generated

configuration, and continues the SA process until it ends.

Next, we will introduce our schedulability analysis method,

the initial solution generation, and the overall algorithm. The

control analysis and security evaluation follow Section III.

A. Schedulability Analysis

An important element of our algorithm is the schedulability

analysis under weakly-hard constraints (Algorithm 1), which

analyzes the scheduling feasibility and the control task dead-

line miss patterns for a given system configuration. As stated

before, we assume that a task will be killed the moment it

misses its deadline (similar strategy as discussed in [14]).

The analysis includes two steps. First, a worst-case response

time (WCRT) analysis based on busy window analysis [23] is

performed to check whether there are any deadline misses (line

1 to 3). If there is not any, the system is already schedulable.

Otherwise, an event-based simulation (line 4 to 27) calculates

the deadline miss pattern for each task within the hyper-period.

One round of such simulation can derive the deadline miss

patterns for all tasks4.

The event-based simulation simulates the execution order of

each task by recording the time-stamp of each event, including

job release, completion, etc. θij = (sθij , cθij ) is the j-th job

of task τi, where sθij = j ·tτi is the release time of the job and

cθij is the remaining computation time of the job. Miss[i][j] =
true if τi’s j-th job θij misses its deadline. event queue and

job queue are two job priority queues for unreleased jobs

and for released but unfinished jobs, respectively. After the

event-based simulation, function V erifyWHConstraint()
verifies weakly-hard constraints by counting the number of

deadline misses within any consecutive N
j
i activations. The

system schedulability and deadline miss pattern Miss will be

returned at the end of the algorithm. A detailed description of

Algorithm 1 can be found in Appendix B.

B. Initial Solution Generation

Given the system profile of a set of control tasks and

other tasks allocated and scheduled on ECUs (and messages

transmitted on a CAN bus), the first step in our algorithm

is to generate an initial solution for the simulated annealing

process. We use a bin packing based method for this step.

For each critical CAN message mi to be monitored, we

iteratively find μi ECUs with the lowest utilization and add

corresponding security monitoring tasks, where μi is the given

redundancy level. After security tasks are added to monitor all

the critical CAN messages (while satisfying their coverage and

redundancy requirements), we check the system schedulability

with CheckSched(). If the system is unschedulable, we

will identify all the security tasks with deadline misses and

increase their periods. The initialization result may still be

unschedulable at the end, which will be further addressed in

the simulated annealing process. A detailed description for the

initialization and the pseudo code can be found in Appendix C.

C. Overall Algorithm

Algorithm 2 shows our overall optimization algorithm.

First, an initial solution is generated as introduced above

4The computational complexity of the event-based simulation depends
on the total number of events within a hyper-period. In our preliminary
experiments of 25 tasks, with periods ranging from 50 to 1000 ms, our event-
based simulation approach is 20 times faster than the analysis method in [19].
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Algorithm 1: CheckSched(): Schedulability Analysis

1: WCRTAnalysis(T )
2: if ∀τi ∈ T , rτi ≤ dτi then

3: return true

4: for task τi ∈ T do

5: event queue.push(θi0)
6: θij = event queue.pop(), cur time = sθij
7: event queue.push(θi(j+1))
8: while cur time ≤ HyperPeriod do

9: while sθij ≤ cur time do

10: job queue.push(θij)
11: θij = event queue.pop()
12: event queue.push(θi(j+1))
13: if job queue is empty then

14: cur time = sθij
15: else

16: θkl = job queue.pop(), next = sθij
17: response = cur time+ cθkl

18: if sθkl
+ dτk < next or response ≤ next then

19: if response ≤ sθkl
+ dτk then

20: Miss[k][l] = false

21: cur time = response

22: else

23: Miss[k][l] = true

24: cur time = max(sθkl
+ dτk , cur time)

25: else

26: cθkl
= cθkl

− (next− cur time)
27: job queue.push(θkl), cur time = next

28: schedulability = V erifyWHConstraint(Miss)
29: return Miss, schedulability

(line 1). Then, a simulated annealing process is conducted to

explore the design space. During each step of the simulated

annealing, the current system configuration Scur is randomly

changed to generate a new configuration Snew in the function

RandomMove() (line 7). The random move could be chang-

ing the allocation of a security monitoring task to another

ECU, swapping the priorities between a security monitoring

task and a control task or an other task on the same ECU, or

changing the period of a security monitoring task.

Once a new configuration is presented, the algorithm calls

the schedulability analysis routine CheckSched() (Algo-

rithm 1) to evaluate the schedulability and obtain control task

deadline miss patterns. With the derived miss patterns, the

algorithm calls a routine ComputeCtrl() to evaluate control

stability and performance, as introduced in Section III-A. It

also calls a routine ComputeSec() to evaluate security objec-

tive and constraints, as defined in Section III-B. The overall

objective value is then computed as defined in Equation (15)

(line 11). If the new configuration fails to satisfy the schedu-

lability, security constraints or control stability, a penalty will

be added to the overall objective value based on the degree

of constraint violations in the function ComputePenalty()
(line 13). We accept the new configuration if the new objective

ηnew is better than previous solution; otherwise, the acceptance

Algorithm 2: Our Optimization Algorithm

1: S0 = Initialization()
2: Sbest = Scur = Snew = S0

3: ηbest = ηcur = ηnew = ComputeObj(S0)
4: while T > T ∗ do

5: k = 1
6: while k ≤ iter max do

7: Snew = RandomMove(Scur)
8: miss, is sched = CheckSched(Snew)
9: ctrl obj, is stable = ComputeCtrl(miss)

10: sec obj, sec feasible = ComputeSec(Snew)
11: ηnew = α ∗ sec obj + β ∗ ctrl obj

12: if is sched ∧ is stable ∧ sec feasible == false

then

13: ηnew = ηnew + ComputePenalty(Snew)
14: if ηnew < ηcur then

15: Scur = Snew, ηcur = ηnew
16: if is sched ∧ is stable ∧ sec feasible == true

then

17: Sbest = min(Scur, Sbest)
18: ηbest = min(ηcur, ηbest)
19: else if AccepProb(ηnew − ηcur, T ) > rand() then

20: Scur = Snew, ηcur = ηnew
21: k = k + 1
22: T = T ∗ cooling factor

23: MergeMonitoringTasks()
24: return Sbest, ηbest

probability is calculated based on current temperature and the

objective difference.

After the simulated annealing process completes, we merge

the security monitoring tasks that have the same period and are

on the same ECU in the function MergeMonitoringTasks()
(line 23). This will not affect the objective function or con-

straints in our current formulation, however could help reduce

the switching overhead in practice.

V. EXPERIMENTAL RESULTS

We evaluate our weakly-hard based codesign method with

an industrial case study and a set of synthetic examples. In

these experiments, we derive the controllers based on the

example LTI systems from [15], [43], [44], [45].

A. Industrial Case Study

We first conduct experiments on an industrial subsystem of

an experiment vehicle (derived from the one in literature [46]).

The experiment vehicle supports data collection from 360◦

sensors and sending control signals to actuators, such as brake,

throttle, steering, etc. There are in total 41 tasks with given

periods and WCETs, distributed on 9 ECUs. 83 messages are

transmitted through a CAN bus. The periods of tasks and

messages range from 10 to 100 ms. The desired period of each

security monitoring task is set to be the period of the corre-

sponding critical messages it monitors while Tmax
i,j = 4×T des

i,j .

Weakly-hard vs. Hard: We first compare the security objec-

tive value between our weakly-hard based approach and the
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traditional system with only hard deadlines. Table I shows the

results of the two cases when different number of messages

are deemed as critical and need to be monitored. The weakly-

hard results are obtained by running our algorithm (Algo-

rithm 2) with the objective function in Equation (15) only

including security (i.e., β = 0). The hard deadline results are

obtained by running our algorithm with only security objective

and hard deadlines. As we can see, allowing weakly-hard

constraints (while ensuring control stability and performance

requirements) can significantly improve the system’s capability

to accommodate security monitoring tasks. Note that when the

number of monitored message is 50 or 60, only hard deadlines

cannot yield feasible solution (i.e., some messages cannot be

monitored with meaningful efficacy).

TABLE I
COMPARISON ON SECURITY BETWEEN ALLOWING WEAKLY-HARD

CONSTRAINTS AND ONLY HARD DEADLINES FOR INDUSTRIAL EXAMPLE.

# of critical messages 20 30 40 50 60

security metric (weakly-hard) 1.42 1.85 2.22 2.66 2.85

security metric (hard) 1.70 2.38 2.93 n.a. n.a.

Trading off control performance and security: Leverag-

ing weakly-hard constraints to improve security is at the

expense of degraded control performance. We conduct ex-

periments to quantitatively evaluate such tradeoff. Fig. 2

shows the pseudo Pareto front between control performance

metric (Equation (9)) and security metric (Equation (12)) when

different weights of α and β are chosen in the overall objective

function (Equation (15)) during our optimization. 50 critical

messages are selected to be monitored with a redundancy

level of 2. The tradeoff trend is very clear and the results

demonstrate the effectiveness of our codesign approach in

addressing the two objectives via weakly-hard constraints.

Moreover, two boundary points are also shown in Fig. 2.

The red asterisk point at bottom-right corresponds to a system

configuration without any deadline miss, i.e., lower bound for

control performance in our model. However, it cannot satisfy

the security monitoring constraints as defined in (11). The red

cross point at top-left corresponds to a system configuration

with all security monitoring tasks having the desired period,

i.e., lower bound for security metric. However, it violates the

control stability constraints as there are too many deadline

misses. These two points demonstrate the necessity to address

control and security in a codesign approach.

B. Synthetic Examples

We also conduct experiments with a set of synthetic ex-

amples of 30 tasks on 4 ECUs. The examples have varying

initial system utilization before adding monitoring tasks (from

0.6 to 0.9 on each ECU). 21 CAN messages are selected to

be monitored, with a redundancy level of 2. The allocation for

the control and other tasks is decided based on a bin packing

approach and their priorities are based on rate monotonic

policy. Each point in Fig. 3 is the average result of 20 synthetic

examples. The figure clearly demonstrates the capability of our

codesign method to trade off control performance and security
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Fig. 2. Tradeoff between control and security for industrial example.
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Fig. 3. Tradeoff between control performance and security for synthetic
examples under different initial utilizations.

(by selecting different weights for the two objectives in our

optimization), similar to the industrial example. Furthermore,

we can observe that under relatively low utilization, it is

easier to improve security (i.e., shortening periods of security

monitoring tasks) without substantial impact on control per-

formance, while under higher utilization, such action will have

more significant impact on control. This trend is reasonable,

and the quantitative results could facilitate design decisions

under different utilizations.

VI. CONCLUSION

We presented a codesign approach to leverage weakly-hard

constraints for improving system security while considering

control performance and stability. Our approach explores the

allocation, priority, and period assignment of security monitor-

ing tasks to optimize a joint objective function of security and

control performance, while meeting requirements on control

stability, schedulability, and security. Experimental results

demonstrate the significant potential of leveraging weakly-

hard constraints and the effectiveness of our approach to fully

realize such potential.
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APPENDIX

A. Example of the System Model

As an example of our system model, in Fig. 1, two control

tasks τ5 and τ6 are allocated to ECU1 and ECU3, respectively.

A security monitoring task τ7 is deployed on ECU4. τ1, τ2,

τ3 and τ4 are tasks implementing other functions. Assuming

an intruder gains access to the system and takes control of

ECU2, it may spoof a benign message stream m, and send

its spoofed message stream m̄ at a higher frequency in order

to suppress the original message m. Security monitoring task

τ7 can leverage specific knowledge of the system to detect

the abnormal message stream m̄ and inform system about the

intrusion, as discussed in [7].

B. Event-based Simulation for Schedulability Analysis

This section presents a more detailed description of our

schedulability analysis method under weakly-hard constraints,

as introduced before in Section IV-A.

In Algorithm 1, we denote the j-th invocation of task τi as

job θij , which can be represented by a tuple (sθij , cθij ). Here,

sθij = j · tτi is the release time of the job, and cθij is the

remaining computation time of the job, which is initially set

as cθij = cτi . For jobs of task τi, their deadline miss patterns

are recorded in an array Miss[i], where Miss[i][j] = true

if τi’s j-th job θij misses its deadline. During the simulation,

event queue and job queue are two job priority queues to

store the unreleased jobs and released but unfinished jobs,

respectively. While event queue is sorted by the job release

time sθij , job queue is sorted by the task priority.

At current time point cur time, any jobs that can be

released are popped from the event queue and pushed into

the job queue, and the highest priority job in the job queue

is scheduled to run. Here, θkl is the scheduled job at cur time

and θij is the next job to release. Then, the simulation moves

to the next time point (the scheduled job’s deadline sθkl
+dτk ,

the scheduled job’s response time response, or the next job’s

release time next = sθij ). In this work, we assume that if

a job misses its deadline, it will be killed and no further

computation is needed. If the scheduled job has not finished

(or been killed) at time next, it will update its remaining

execution time cθij and be pushed back to the job queue.

Every time a job θkl finishes (or gets killed), the simulation

records whether it misses its deadline in Miss[k][l]. After the

simulation completes, the function V erifyWHConstraint()
counts the maximum deadline misses of any consecutive N

j
i

activations (i.e., dmmi(N
j
i )) to verify whether tasks with

weakly-hard constraints meet those constraints. The return

value schedulability indicates the overall schedulability, and

Miss represents the deadline miss patterns.

C. Initial Solution Generation

This section presents a more detailed description of our

initial solution generation method, as introduced before in

Section IV-B.

The pseudo code for our initial system generation method

is shown in Algorithm 3. For each CAN message mi, we

iteratively find μi ECUs and add security tasks on those

ECUs to monitor this message (line 1 to 7). Here μi is

the redundancy level requirement for mi, i.e., mi has to be

monitored by μi security tasks on different ECUs, as defined in

Section III-B. More specifically, in each iteration, we find the

ECU ej currently with the lowest utilization, add a security

monitoring task on ej for mi, and then remove ej from E .

Function AddMonitoringTask() also updates the utilization

of ej and sets the initial period of the new security task the

same as mj’s period.

After security tasks are added to monitor all the critical

CAN messages (while satisfying their coverage and redun-

dancy requirements), we check the system schedulability with

CheckSched(). If the system is not schedulable (very likely

in practice), we will identify all the security tasks that have

deadline misses and scale their periods by an integer factor

s, until the system becomes schedulable or s reaches Kmax

(line 8 to 10).

Algorithm 3: Initialization(): Initial Solution Genera-

tion

1: for each message mi in Mcri do

2: k = μi, E = {e1, e2, . . . , ene
}

3: while k > 0 do

4: Choose ECU ej with the lowest utilization among E
5: ami,ej = 1, k = k − 1
6: AddMonitoringTask(mi, ej)
7: remove ej from E
8: for s ← 2 to Kmax do

9: if CheckSched() == false then

10: Scale the periods of deadline-missed security tasks

by s
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